Publications

Publications (Ultrasonic Bone Assessment) 

  • Hoffmeister BK, Viano AM, Huang J, Fairbanks LC, Ebron SC, Moore JT, Ankersen JP, Huber MT and Diaz AA “Ultrasonic backscatter difference measurements of cancellous bone from the human femur: relation to bone mineral density and microstructure,” Journal of the Acoustical Society of America 143(6), 3642-3653 (2018)
  • Hoffmeister BK, Huber MT, Viano AM and Huang J, “Characterization of a polymer, open-cell rigid foam that simulates the ultrasonic properties of cancellous bone,” Journal of the Acoustical Society of America 143(2), 911-920 (2018)
  • Hoffmeister BK, Viano AM, Fairbanks LC, Ebron SC, McPherson JA and Huber MT, “Effect of gate choice on backscatter difference measurements of cancellous bone,” Journal of the Acoustical Society of America 142(2), 540-550 (2017)
  • Hoffmeister BK, Smathers MR, Miller CJ, McPherson JA, Thurston CR, Spinolo PL and Lee SR, “Backscatter difference measurements of cancellous bone using an ultrasonic imaging system,” Ultrasonic Imaging, 38(4), 285-97 (2016)
  • Hoffmeister BK, McPherson JA, Smathers MR, Spinolo PL, and Sellers ME, “Ultrasonic backscatter from cancellous bone: the apparent backscatter transfer function,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62 (12), 2115-2125 (2015)
  • Hoffmeister BK, Spinolo PL, Sellers ME, Marshall PL, Viano AM, and Lee SR, “Effect of intervening tissues on ultrasonic backscatter measurements of bone: an in vitro study,” Journal of the Acoustical Society of America 138(4), 2449-2457 (2015)
  • Hoffmeister BK, Wilson AR, Gilbert MJ and Sellers ME “A backscatter difference technique for ultrasonic bone assessment,” Journal of the Acoustical Society of America 132(6), 4069-4076 (2012)
  • Hoffmeister BK, Holt AP and Kaste SC, “Effect of the cortex on ultrasonic backscatter measurements of cancellous bone,” Physics in Medicine and Biology, 56, 6243-6255 (2011)
  • Hoffmeister BK, “Frequency dependence of apparent ultrasonic backscatter from human cancellous bone,” Physics in Medicine and Biology, 56, 667-683 (2011)
  • Hoffmeister BK, Johnson DP, Janeski JA, Keedy DA, Steinert BW, Viano AM and Kaste SC, “Ultrasonic characterization of human cancellous bone in vitro using three different apparent backscatter parameters in the frequency range 0.6-15.0 MHz,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55 (7), 1442-1452 (2008)
  • Hoffmeister BK, Jones CI III, Caldwell GJ and Kaste SC, “Ultrasonic characterization of cancellous bone using apparent integrated backscatter,” Physics in Medicine and Biology, 51, 2715-2727 (2006)
  • Waters KR and Hoffmeister BK, “Kramers-Kronig analysis of attenuation and dispersion in trabecular bone,” Journal of the Acoustical Society of America, 118 (6), 3912-3920 (2005)
  • Hoffmeister BK, Auwarter JA and Rho JY, “Effect of marrow on the high frequency ultrasonic properties of bovine cancellous bone,” Physics in Medicine and Biology, 47, 3419-3427 (2002)
  • Hoffmeister BK, Whitten SA, Kaste SC and Rho JY, “Effect of collagen and mineral content on the high frequency ultrasonic properties of human cancellous bone,” Osteoporosis International, 13, 26-32 (2002)
  • Hoffmeister BK, Whitten SA and Rho JY, “Low megahertz ultrasonic properties of bovine cancellous bone,” Bone, 26, 635-642 (2000)
  • Hoffmeister BK, Smith SR, Handley SM and Rho JY, “Anisotropy of Young’s modulus of human tibial cortical bone,” Medical & Biological Engineering & Computing, 38, 333-338 (2000)

 Publications (Other Areas) 

  • Banerjee S, Hoffmeister BK, Badger CS and Svejkosky J, “Electrostatic charging of a conducting sphere using another conducting sphere at constant voltage,” Journal of Electrostatics, 69, 601-603 (2011)
  • Hoffmeister BK, Meyer DA, Atkins BM, Franks GA, Fuchs JT, Li L, Sliger CW and Thompson JE, “Orbital dynamics of two electrically charged conducting spheres,” American Journal of Physics, 78 (10), 1002-1006 (2010)
  • Fitch DA, Hoffmeister BK and de Ana J, “Ultrasonic evaluation of polyether ether ketone and carbon fiber-reinforced PEEK,” Journal of Materials Science, 45 (14), 3768 (2010)
  • Banerjee S, Andring KW, Campbell DL, Janeski JA, Keedy DA, Quinn SP and Hoffmeister BK, “Orbital motion of electrically charged spheres in microgravity,” The Physics Teacher, 46, 460-464 (2008)
  • Park K, Hoffmeister BK, Han D and Hasty K, “Therapeutic ultrasound effects on interleukin-1β stimulated cartilage construct in vitro,” Ultrasound in Medicine & Biology, 33 (2) , 286–295 (2007)
  • Hoffmeister BK, Shores AR, Banerjee S and Malkin RA, “Effect of electrically insulating materials on magnetically induced electrical currents in a tissue-like medium,” American Journal of Physics, 74 (4), 260-266 (2006)
  • Mishra SR, Kumar S, Park A, Rho J, Losby J and Hoffmeister BK, “Ultrasonic characterization of the curing process of PCC fly ash-cement composite,” Journal of Materials Characterization, 50, 317-323 (2003)
  • Sylvester E, Johnson E, Hoffmeister BK and Malkin RA, “Defibrillation causes immediate cardiac dilation in humans,” Journal of Cardiovascular Electrophysiology, 14, 1-5 (2003)
  • de Jongh AL, Ramanathan V, Hoffmeister BK and Malkin RA, “Left ventricular geometry immediately following defibrillation: shock-induced relaxation,” American Journal of Physiology – Heart Circulation Physiology, 284, H815-H819 (2003)
  • Malkin RA and Hoffmeister BK, “The mechanism by which 60 Hz AC currents cause hemodynamic collapse without inducing VF,” Journal of Cardiovascular Electrophysiology, 12, 1154-1161 (2001)
  • Viano AM, Auwarter JA, Rho JY, and Hoffmeister BK, “Ultrasonic characterization of the curing process of hydroxyapatite modified bone cement,” Journal of Biomedical Materials Research, 56 (4), 593-599 (2001)
  • Malkin RA, Smith SR and Hoffmeister BK, “Defibrillation and the geometry of the heart: a novel measurement with implications for defibrillation mechanisms,” Physiological Measurement, 22, 309-321 (2001)
  • Rho JY, Kankanla KR, Hoffmeister BK, Qi G and Zioupos P, “Ultrasonic characterization of fatigue accumulation in bovine cancellous bone,” Transactions of the American Society of Biomechanics 24, 80-81 (2000)
  • Malkin RA and Hoffmeister BK, “Hemodynamic collapse, geometry and the rapidly paced upper limit of ventricular vulnerability to fibrillation by T-wave stimulation,” Journal of Electrocardiology, 33, 279-286 (2000)
  • Hoffmeister BK, Handley SM, Wickline SA and Miller JG, “Ultrasonic determination of the anisotropy of young's modulus of fixed tendon and fixed myocardium,” Journal of the Acoustical Society of America, 100, 3933-3940 (1996)
  • Hoffmeister BK, Gehr SE and Miller JG, “Anisotropy of the transverse mode ultrasonic properties of fixed tendon and fixed myocardium,” Journal of the Acoustical Society of America, 99, 3826-3836 (1996)
  • Verdonk ED, Hoffmeister BK, Wickline SA and Miller JG, “Anisotropy of the slope of ultrasonic attenuation in formalin fixed human myocardium,” Journal of the Acoustical Society of America, 99, 3837-3843 (1996)
  • Hoffmeister BK, Handley SM, Verdonk ED, Wickline SA and Miller JG, “Estimation of the elastic stiffness coefficient c13 of fixed tendon and fixed myocardium,” Journal of the Acoustical Society of America, 97, 3171-3176 (1995)
  • Hoffmeister BK, Wong AK, Verdonk ED, Wickline SA and Miller JG, “Comparison of the anisotropy of apparent integrated ultrasonic backscatter from fixed human tendon and fixed human myocardium,” Journal of the Acoustical Society of America, 97, 1307-1313 (1995)
  • Hoffmeister BK, Verdonk ED, Wickline SA and Miller JG, “Effect of collagen on the anisotropy of quasi-longitudinal mode ultrasonic velocity in fibrous soft tissues: a comparison of fixed tendon and fixed myocardium,” Journal of the Acoustical Society of America, 96, 1957-1964 (1994)
  • Wong AK, Verdonk ED, Hoffmeister BK, Miller JG and Wickline SA, “Detection of unique transmural architecture of human idiopathic cardiomyopathy by ultrasonic tissue characterization,” Circulation, 86, 1108-1115 (1992)