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Abstract
Aim: Macroecological analyses provide valuable insights into factors that influence 
how parasites are distributed across space and among hosts. Amid large uncertainties 
that arise when generalizing from local and regional findings, hierarchical approaches 
applied to global datasets are required to determine whether drivers of parasite in-
fection patterns vary across scales. We assessed global patterns of haemosporidian 
infections across a broad diversity of avian host clades and zoogeographical realms to 
depict hotspots of prevalence and to identify possible underlying drivers.
Location: Global.
Time period: 1994–2019.
Major taxa studied: Avian haemosporidian parasites (genera Plasmodium, 
Haemoproteus, Leucocytozoon and Parahaemoproteus).
Methods: We amalgamated infection data from 53,669 individual birds representing 
2,445 species world-wide. Spatio-phylogenetic hierarchical Bayesian models were 
built to disentangle potential landscape, climatic and biotic drivers of infection prob-
ability while accounting for spatial context and avian host phylogenetic relationships.
Results: Idiosyncratic responses of the three most common haemosporidian genera to cli-
mate, habitat, host relatedness and host ecological traits indicated marked variation in host 
infection rates from local to global scales. Notably, host ecological drivers, such as migration 
distance for Plasmodium and Parahaemoproteus, exhibited predominantly varying or even op-
posite effects on infection rates across regions, whereas climatic effects on infection rates 
were more consistent across realms. Moreover, infections in some low-prevalence realms 
were disproportionately concentrated in a few local hotspots, suggesting that regional-scale 
variation in habitat and microclimate might influence transmission, in addition to global drivers.
Main conclusions: Our hierarchical global analysis supports regional-scale findings 
showing the synergistic effects of landscape, climate and host ecological traits on 
parasite transmission for a cosmopolitan and diverse group of avian parasites. Our 
results underscore the need to account for such interactions, in addition to possible 
variation in drivers across regions, to produce the robust inference required to predict 
changes in infection risk under future scenarios.

K E Y W O R D S

avian malaria, avian migration, disease hotspot, disease macroecology, haemosporidian 
prevalence, host–parasite interaction, infection probability, parasite macroecology, 
Plasmodium, spatio-phylogenetic models
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1  | INTRODUC TION

A growing consensus based on theory and empirical evidence sug-
gests that global change will impact the world-wide distributions 
and burdens of vector-transmitted pathogens that infect humans 
(Lafferty, 2009; Mordecai et al., 2020; Ryan et al., 2019). Likewise, 
climate change and anthropogenic landscape modification are 
predicted to alter the geographical range of non-human patho-
gens, such as avian malaria parasites (Benning et al., 2002; Loiseau 
et al., 2012, 2013; Pérez-Rodríguez et al., 2014), whereby infection 
patterns of avian hosts in natural environments are often driven 
by an interplay of regional changes in biotic and abiotic conditions 
(Fecchio et al., 2019). The anticipation of spatial or temporal shifts in 
infection risk requires reliable estimates of prevalence across habi-
tats under different anthropogenic disturbance levels and climatic 
gradients (Stephens et al., 2016; Weiss et al., 2019). The synergis-
tic effects of such drivers on the broadest levels of host taxonomic 
and community organization are poorly described for the majority of 
non-human parasites.

Mean temperatures are expected to increase unevenly across 
the globe in the coming decades (Wehner, 2020). For example, nights 
are expected to be warmer in continental interiors than in coastal 
regions (Wehner,  2020), and extreme temperature ranges are ex-
pected to decrease at high latitudes and increase within subtropical 
regions (Fischer et al., 2011). Given that the effects of climate-driven 
temperature change will not be uniform spatially, average global 
warming could alter disease transmission rates and shift the geo-
graphical ranges of many parasitic organisms with different modes 
of transmission (Altizer et al., 2013; Loiseau et al., 2013). For exam-
ple, optimal temperatures for reproduction of Plasmodium malaria 
parasites within invertebrate vectors are a crucial prerequisite for 
successful transmission to humans (Mordecai et al., 2013). The exis-
tence of thermal niches that promote vector activity means that dis-
tributions of many vector-borne pathogens might extend into new 
geographical regions as temperatures change (Ryan et al., 2019). In 
Africa, for example, where average temperatures are expected to 
increase between 3 and 4℃ by 2100 (c. 1.5 times the global mean re-
sponse; Christensen et al., 2007), hotspots for human malaria risk are 
predicted to shift toward higher elevations, and the relative burdens 
of dengue fever over malaria are expected to increase across the 
Sub-Saharan region (Mordecai et al., 2020). Given that temperature 
might predominately influence infection risk for vector-transmitted 
pathogens, future climate warming will be an important force driv-
ing the prevalence of many human and wildlife diseases (Benning 
et al., 2002; Cable et al., 2017; Lafferty, 2009; Loiseau et al., 2013).

For those parasites infecting multiple host species, spatial het-
erogeneity in infection probability across host communities might 
change in response not only to climate filters, but also to changing 
host species distributions (e.g., host richness) that provide new eco-
logical opportunities for a parasite to expand its host range and in-
crease its local prevalence (Canard et al., 2014; Wells & Clark, 2019). 
Inevitably, transformation of natural habitats for urban develop-
ment and agriculture is creating widespread change in habitats and 

microclimates, leading to shifts in host and vector species pools, 
thereby impacting parasite transmission (Ferraguti et al., 2020). This 
human-induced habitat modification is occurring unevenly across 
regions and most rapidly within tropical and subtropical grasslands, 
savannahs and shrubland ecosystems (Williams et al., 2020).

At the avian host-species level, functional traits, such as pre-
ferred foraging habitat or dependence on forested habitats (e.g., 
higher vegetation density) and foraging height, can influence rates 
of vector exposure for a given avian host, leading to heteroge-
neous infection probabilities across avian species (Clark et al., 2020; 
Garvin & Greiner, 2003). However, assessing the influence of host 
and parasite traits on infection rates across host communities re-
quires careful consideration of the evolutionary histories of species. 
Traits that influence avian host immune responses and potentially 
restrict parasite invasion, such as body size (Ruhs et al., 2020), are 
often phylogenetically conserved (Minias,  2019). Accordingly, one 
would expect greater variation in infection rates among rather than 
within host clades. Furthermore, avian life-history strategy is known 
to influence haemosporidian prevalence (Barrow et  al.,  2019; Ellis 
et  al.,  2020; Lutz et  al.,  2015). For example, larger and migratory 
avian species are more often infected by haemosporidian parasites, 
owing to their propensity to harbour a broader diversity of parasite 
lineages or by being exposed to a higher abundance and diversity of 
vectors and, in turn, to vector-transmitted parasites (de Angeli Dutra 
et al., 2021; Filion et al., 2020).

Avian haemosporidian parasites of the genera Plasmodium, 
Haemoproteus, Parahaemoproteus and Leucocytozoon are a di-
verse group of vector-transmitted parasites (Galen et  al.,  2018; 
Valkiūnas,  2005). They infect blood cells of a wide range of avian 
hosts across all zoogeographical regions (Valkiūnas,  2005). The 
parasite genera Plasmodium, Haemoproteus, Parahaemoproteus 
and Leucocytozoon are predominantly transmitted by mosqui-
tos (Culicidae), hippoboscid flies (Hippoboscidae), biting midges 
(Ceratopogonidae) and black flies (Simuliidae), respectively (re-
viewed by Santiago-Alarcon et al., 2012). The life histories of these 
dipteran vectors depend on temperature and on the presence of 
either running or standing water (Santiago-Alarcon et  al.,  2012; 
Valkiūnas,  2005). Black fly larval development and Leucocytozoon 
sexual reproduction do not appear to be highly constrained by low 
temperature (Fecchio et al., 2020; Valkiūnas, 2005). In contrast, the 
expected optimal temperature range of 13–28°C for Plasmodium 
sexual reproduction and mosquito activity suggests some con-
straint on the transmission of avian malarial parasites along lat-
itudinal or elevational gradients, despite the global distribution of 
Plasmodium (Atkinson et  al.,  2014; Santiago-Alarcon et  al.,  2012; 
Valkiūnas, 2005).

Haemosporidian parasites exhibit broad variation in prevalence, 
but the drivers of this variation across zoogeographical realms and 
among avian clades are only partially understood from region-level 
studies. In recent years, numerous studies have explored haemo-
sporidian infection rates in birds across habitat gradients under 
different regional land-use or climate conditions, but with no con-
sistent predictor identified across studies (e.g., Ellis et  al.,  2020; 
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Gupta et al., 2020; Harvey & Voelker, 2019; Ishtiaq et al., 2017; Lutz 
et al., 2015; Santiago-Alarcon et al., 2019). Mounting evidence that 
various landscape and climate conditions, in addition to host and 
vector species attributes, might drive avian haemosporidian infec-
tions calls for global approaches to disentangle abiotic and biotic 
drivers and anticipate macroecological patterns of parasite spread 
under current and future conditions.

To explore macroecological patterns of avian haemosporidian 
prevalence, we compiled global-scale infection data from 53,669 
birds sampled from 141 avian families and 48 countries dispersed 
across 10 zoogeographical realms. First, we used 14 biotic and abi-
otic factors known to influence infection rates of haemosporidian 
parasites from multiple regional-scale studies to identify the driv-
ers of infection probability for each parasite genus. Second, we 
assessed whether estimated effects of these drivers vary across 
zoogeographical realms. Third, we tested whether parasite preva-
lence varies among and within avian host clades. Our use of Bayesian 
hierarchical spatio-phylogenetic modelling to estimate prevalence at 
the broadest levels of host taxonomic and community organization 
across 10 zoogeographical realms, coupled with information on host 
species traits, allowed us to assess empirically how recent anthro-
pogenic landscape transformations and climatic gradients synergis-
tically drive the prevalence of a multi-host vector-transmitted group 
of parasites world-wide.

2  | MATERIAL S AND METHODS

2.1 | Host–parasite data

To compile a representative global dataset, we amalgamated field 
data from an international network of collaborators. We screened 
the available literature iteratively for studies reporting haemospo-
ridian parasite prevalence. We screened the MalAvi database, the 
dominant public repository for avian malaria and related parasites 
(Bensch et al., 2009), for studies reporting haemosporidian infection 
and parasite sequences in bird assemblages with reasonably large 
sample sizes (>  100 individuals and more than five host species). 
The raw capture data, including presence–absence records of infec-
tions and geographical coordinates of surveyed birds, were then re-
quested from the authors of relevant studies (for further details, see 
Supporting Information Appendix S1). The compiled infection data 
can be accessed in the Supporting Information (Table S1).

Any compiled dataset is a finite and biased sample, given that 
study locations are chosen by researchers according to interest and 
logistic constraints rather than comprising a truly random sample. 
Nonetheless, we believe that our dataset provides a reasonable sam-
ple for exploring global patterns of haemosporidian infection in birds 
because it covers all major geographical regions (for an overview of 
sample sizes from different zoogeographical regions, see Supporting 
Information Table S2). Moreover, our dataset includes c.  24% of 
all known bird species (2,445 out of c.  10,000 species recognized 
by Jetz et al., 2012) and, to the best of our knowledge, covers the 

majority of areas surveyed for haemosporidian parasites in birds to 
date (Supporting Information Figure S1).

Bird species names from field data were revised and assigned 
to families according to the taxonomy used by Birdtree.org (Jetz 
et al., 2012). To generate a family-level phylogenetic tree, we ran-
domly selected five species-level fossil-calibrated trees from a phy-
logenetic posterior distribution estimated from multiple genetic loci 
for the majority of extant bird species (Jetz et al., 2012). We calcu-
lated the pairwise mean Euclidean distance from all combinations of 
species for each pair of bird families and then converted the result-
ing distance matrix into a phylogenetic dendrogram using functions 
in the ape and phylogram R packages (Paradis et al., 2004).

2.2 | Parasite detection and identification

Blood or tissue samples (liver or muscle) from all individuals were 
screened for haemosporidian infection by polymerase chain reac-
tion, following standard protocols for amplifying a fragment of the 
parasite cytochrome-b gene (cyt-b). For a detailed description of the 
molecular detection of parasites, see the Supporting Information 
(Appendix S1).

Detected haemosporidian parasites were classified as 
Haemoproteus, Leucocytozoon, Parahaemoproteus or Plasmodium fol-
lowing the lineage identification protocol from the MalAvi database 
(Bensch et  al.,  2009). We characterized each individual bird with 
respect to each parasite genus as infected, not infected (screened 
with relevant primers but no lineage detected) or missing (when the 
sample was not screened for the genus Leucocytozoon or when sepa-
ration of parasites of the genera Haemoproteus and Plasmodium was 
not achieved via sequencing).

2.3 | Host traits and climatic and 
environmental data

Relevant climatic variables at sample locations were obtained from 
the WorldClim database of gridded climate data at a resolution of 
.01° (Fick & Hijmans, 2017; http://worldclim.org/version2). We used 
annual mean temperature (bio1), annual rainfall (bio12), rainfall of 
the driest month (bio14) and rainfall seasonality (coefficient of varia-
tion in rainfall over the year; bio15) to characterize aspects of climate 
previously shown to be associated with haemosporidian occurrence 
(Clark et al., 2020; Fecchio et al., 2019). Elevation for all locations was 
quantified using Shuttle Radar Topography Mission (SRTM) data, ac-
cessible through the raster package in R. We classified the proportion 
of cover with forest and wetland in buffers of 10 km radius around 
sample locations based on Copernicus landcover data from 2010 
(map v.2.07; https://cds.clima​te.coper​nicus.eu). We downloaded the 
normalized difference vegetation index (NDVI) for the year 2010 
in buffers of 10  km radius around all sampling locations from the 
Terra Moderate Resolution Imaging Spectroradiometer (MODIS, 
MOD13Q1 v.6; https://lpdaac.usgs.gov/produ​cts/mod13​q1v00​6/) 

http://world
https://cds.climate.copernicus.eu
https://lpdaac.usgs.gov/products/mod13q1v006/
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and calculated the mean and one standard deviation of NDVI as 
measures of the vegetation density and its annual fluctuation.

We defined local species richness of terrestrial birds based on a 
published map that summarizes bird species richness from BirdLife 
International range maps (https://biodi​versi​tymap​ping.org/). 
Zoogeographical realm characterization followed Holt et al. (2013), 
who delineated realms for birds by integrating the distributions and 
phylogenetic relationships of 10,074 bird species.

We obtained species-level host traits from the EltonTraits v.1.0 
database (Wilman et  al.,  2014). In particular, we considered host 
body mass and the proportion of time that individuals spend for-
aging in the upper canopy, following previous trait-based analyses 
(Clark et al., 2020; Fecchio et al., 2020; Filion et al., 2020). For spe-
cies with missing attributes in this database, values for the closest 
relative were used instead. We also included migration distance, 
extracted from the study by Dufour et  al.  (2020), as a covariate. 
The migration distances of species were estimated from distribu-
tion maps (distance between midpoints of breeding and wintering 
ranges). Given that ages of individual birds were not available for all 
datasets, we did not include this trait in our model. We tested the 14 
covariates for collinearity and found no strong correlation between 
predictor variables (all pairwise Spearman's |r| < .7).

2.4 | Spatio-phylogenetic statistical modelling of 
multi-host infection patterns

To identify key drivers of infection of birds by haemosporidian para-
sites, while accounting for possible spatio-temporal and phyloge-
netic patterns underpinning the global dataset, we used a Bayesian 
statistical model to jointly estimate the posterior distributions of 
fixed parameters (host traits and environmental data as described 
above) and random effect parameters. This approach enabled us to 
reduce possible bias of modelled random effects in our multiple-
species system, including the spatial clustering of samples (i.e., 
multiple host individuals captured in the same climate and habitat 
conditions), phylogenetic relationships of multiple species (i.e., bird 
species belonging to different families, which vary in sampling inten-
sity and are unevenly clustered among sampling locations), temporal 
bias (i.e., samples collected in different years), and possible statistical 
interactions between these factors and zoogeographical region (i.e., 
when the effect of a factor differs across regions).

We assumed that infection Y of any sampled bird individual x 
with one of the haemosporidian genera p was a random draw from 
the true underlying parasite prevalence φ conditional on location l 
and host species identity h:

Within our generalized linear mixed-effect model (GLMM) 
framework, φl,h was modelled further with a suitable link function 
(e.g., logit-link) and regressed against a range of location- and host-
specific covariates (Xi and Xj; see descriptions in paragraph above), 

which we considered as fixed effects. In multispecies models, phylo-
genetic relationships are likely to influence conclusions on infection 
patterns, because closely related species often exhibit similar infec-
tion rates. We considered phylogenetic relationship of host species 
at the family level as a random effect. We considered four different 
model structures of increasing complexity to model logit(φi,l,h) (see 
Equations 2–5).

First, in addition to the fixed effects, we considered sampling 
year, sampling source (τS, with the three categories: blood, muscle 
and liver) and phylogenetic position as additional random effects, 
resulting in a phylogenetic GLMM (phyl-cov-GLMM), given as:

Here, βi and βj are the respective coefficient estimates for fixed 
effects, and γy is a random effect estimate based on sampling year. 
The random effect for phylogenetic relationships of different host 
species (vF) is based on an inverse phylogenetic variance–covariance 
matrix derived from the pairwise distance relationships (i.e., each 
sampled bird individual is characterized by its distance relationship 
in terms of its family to that of any other sampled bird individual), 
which can be expressed as latent Gaussian Markov random fields 
in Bayesian frameworks (we used the default “generic0” option in 
the INLA package in R, which set the log-Gamma hyperparameter 
prior to a shape parameter of one and a rate of .00005). This op-
tion is equivalent to assuming that parameter estimates are derived 
from multivariate Gaussian distributions with (zero) means as hyper-
parameters and spatially structured covariance matrices based 
on the underpinning dependence structure of distance/similarity 
relationships.

Given that our dataset included samples from different zoogeo-
graphical realms with distinct host species assemblages, we tested 
a second model by including the zoogeographical realm as a ran-
dom effect (πr), extending our basic phylogenetic GLMM (regional 
phyl-GLMM):

Given that captures of multiple host individuals at the same 
sampling locations in field surveillance leads to spatial pseudo-
replication, we included a spatial random effect (ul) in a third model, 
resulting in a spatio-phylogenetic GLMM (spatio-phyl-GLMM) given 
as:

As an additional extension of the model, the fourth structure 
we explored included possible varying coefficient estimates for the 
fixed effects, assuming that because of the global scale of the study, 
drivers of infection probabilities (denoted as fixed effects) might 
vary across zoogeographical realms. Without loss of generality of 
the GLMM concept, we can assume that the fixed effect coefficient 
estimates βi and βj are not constant across zoogeographical realms, 

(1)Yx = Bernoulli
(

�l,h

)

(2)logit
(

�l,h

)

= βiXi,l + βjXj,h + γy + τS + vF

(3)logit
(

�l,h

)

= βiXi,l + βjXj,h + γy + τS + πr + vF

(4)logit
(

�l,h

)

= βiXi,l + βjXj,h + γy + τS + πr + vF + ul

https://biodiversitymapping.org/
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and they allow for possible deviation by modelling coefficients for 
each zoogeographical realm based on baseline values β0i and β0j, 
respectively. Moreover, random deviation from these values across 
samples from different zoogeographical realms r result in a spatio-
phylogenetic varying coefficient GLMM (spatio-phyl-varcoef-
GLMM) given as:

where ξi,r and ξj,r are vectors of random effects (r = 1, …, R) defining 
a stochastic process with a specified Gaussian model over the R = 10 
zoogeographical realms covered in this study.

In addition to the models described above, we fitted an intercept-
only model to derive estimates of overall infection probability. We 
also fitted GLMMs with either realm or location as a random effect 
to derive location- and region-specific estimates of infection prob-
abilities. We did so to identify possible regional/local hotspots (av-
erage high infection probabilities). For model fitting and inference, 
we used the integrated nested Laplace approximation (INLA) as a 
computationally efficient way to solve such latent Gaussian spatial 
models (Lindgren et al., 2011; Rue et al., 2009). The INLA program 
models covariance for a random effect using a precision matrix (the 
inverse of a covariance matrix), taking advantage of sparse struc-
tures for efficient computation (Rue et al., 2009). For all random ef-
fects based on groupings (i.e., year, region and region-level varying 
coefficients), we fitted first-order random walk models (Gaussian 
Markov random field, specified by a zero mean multivariate Gaussian 
probability density function).

For fitting the spatial random effect, ul, we used the stochas-
tic partial differential equation (SPDE) approach, as implemented 
in INLA, to model spatial effects using a Gaussian field based on a 
Matérn correlation function and a spatial triangulate mesh around 
sampling locations (Bakka et al., 2018). Setting the minimum allowed 
distance between points (cut-off) to .1° of latitude and the largest 
allowed triangle edge length (max edge) to three resulted in a mesh 
of 38,305 triangles, with the smallest edge lengths and finest mesh 
resolution adjacent to sampling locations (Supporting Information 
Figure S2).

Continuous predictor variables were standardized to unit vari-
ance before analysis. For fixed effects, we used penalized complexity 
priors (using the “pc.prec” option in the INLA settings), which penal-
ize any departure from the base model and constrain coefficients to 
zero if there is insufficient support in the data otherwise. Such priors 
are commonly used for regularization of regression coefficients in 
multiple regression models (Simpson et al., 2017).

For model comparison and validation, we computed deviance 
information criteria (DIC) for each candidate model (Spiegelhalter 
et  al.,  2002). We also computed conditional predictive ordinates 
(CPO) as cross-validation criteria, which estimate, for each observa-
tion, a probability of obtaining the observed value when the model is 
fitted using all data apart from the left-out observation; larger values 
indicate a better model fit to the data, whereas small values indicate 
a poorer model fit.

We present results as posterior means and 95% credible inter-
vals (CIs) and considered CIs that did not overlap with zero or with 
each other in pairwise comparisons as “significantly different”. 
Despite the overall large sample size, group-specific estimates can 
be burdened by substantial uncertainty (i.e., when few individuals 
for a certain location or host clade have been sampled). We consid-
ered group-level estimates to be meaningful only if the width of the 
respective CI was < 10%.

3  | RESULTS

3.1 | Strong spatial variation in haemosporidian 
infection probability coincides with strong 
phylogenetic variation among host clades

The estimated global average infection probability of birds 
with haemosporidian parasites differed among parasite gen-
era: Leucocytozoon (13.2%, CI: 12.8–13.7%, n  =  26,635 screened 
birds, intercept-only model), Plasmodium (12.8%, CI: 12.5–13.1%, 
n = 53,669), Parahaemoproteus (13.8%, CI: 13.5–14.1%, n = 53,669) 
and Haemoproteus (.7%, CI: .6–.8%, n = 53,669). The low overall in-
fection probability for Haemoproteus can be explained by this genus 
being mostly restricted to Columbidae (doves and pigeons) and 
Fregatidae (frigatebirds), whereas the similar infection probabilities 
for the other three haemosporidian genera might reflect their ability 
to infect a broad spectrum of avian clades (Supporting Information 
Figure  S3). Among the 141 avian host families surveyed, those 
with the highest average infection probabilities were all songbirds 
(Passeriformes): Paridae, Corvidae and Oriolidae for Leucocytozoon; 
Zosteropidae and Melanocharitidae for Parahaemoproteus; and 
Parulidae, Turdidae and Conopophagidae for Plasmodium, accord-
ing to the lower CI estimates of phylogenetic effects (Supporting 
Information Figure S3).

Infection probabilities differed considerably among zoogeo-
graphical realms (Figure  1; Supporting Information Table S2). For 
the three most common haemosporidian genera (Leucocytozoon, 
Parahaemoproteus and Plasmodium), infection probabilities were 
highest in the Saharo-Arabian realm, with lower CI estimates ≥ 24%. 
Leucocytozoon infection probabilities were lowest in the Oceanian, 
Oriental and Panamanian realms. Parahaemoproteus infection was 
lowest in the Australian, Neotropical and Sino-Japanese realms. 
Plasmodium infection was lowest in the Australian, Oceanian, 
Oriental and Sino-Japanese realms (all respective upper CIs < 10% 
from GLMMs with region as random effects; Figure 1). Given its re-
striction to doves and frigatebirds, the prevalence of Haemoproteus 
was < 5% (respective upper CIs) in all realms except for Oceanian 
and estimated to be highest in the Palearctic and Oceanian realms 
(both lower CIs ≥ 2.3%).

We found considerable spatial variation in average infection 
probabilities across locations within regions (GLMM with locations 
as random effects), although estimates with acceptable uncer-
tainty (CIs ≤ 10%) occurred in only 45–104 of the 1,630 sampling 

(5)logit
(

�l,h

)

=
(

β0i + ξi,r
)

Xi,l +
(

β0j + ξj,r
)

Xj,h + γy + τS + πr + vF + ul
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locations (Figure 2). Using these location-based estimates, four cur-
rently recognizable local hotspots of Haemoproteus infection were 
identified in the Neotropical realm, with infection rates >  2% (re-
spective lower CIs ≥ 2%). Hotspots (locations with highest lower CIs) 

for Leucocytozoon and Parahaemoproteus were dispersed across dif-
ferent zoogeographical realms: Parahaemoproteus in the Palearctic 
and Australian realms with lower CIs ≥ 25%, and Leucocytozoon in 
Afrotropical, Nearctic and Palearctic with lower CIs ≥ 13%). Hotspots 

F I G U R E  1   Region-specific estimates of average infection probabilities of birds for four haemosporidian genera, based on 53,669 sampled 
bird individuals [estimates from generalized linear mixed-effect model (GLMM), with region as a random effect]. Error bars depict 95% 
credible intervals, reflecting uncertainty related to sample sizes in different regions 

F I G U R E  2   Estimated average parasite prevalence at different locations, shown only for locations with ≤ 10% uncertainty in estimates 
according to the size of 95% credible intervals 
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of Plasmodium occurred in the Nearctic realm (three locations with 
lower CIs ≥ 21%).

3.2 | Drivers of global infection probability

Models that included phylogenetic and spatial effects and ac-
counted for varying fixed-effect coefficients (spatio-phyl-
varcoef-GLMM; Equation 5) provided the best fit to the observed 
data and the strongest predictive power according to both the 
DIC and CPO criteria (Supporting Information Table S3). We 
therefore report results from this model unless stated otherwise. 
We note, however, that phylogenetic effects were burdened by 
high uncertainties, indicating the challenges of disentangling phy-
logenetic effects from spatial and climatic covariates (Supporting 
Information Figure S3).

Infection probabilities exhibited idiosyncratic associations with 
host traits, landscape variables and climate conditions at the global 
scale. Among the 14 covariates used in the analyses, 11 exhibited 
“global average” coefficient estimates for which CIs did not overlap 
with zero (Figure  3; Supporting Information Table S4). Given that 
overall Haemoproteus prevalence was extremely low (370 infec-
tions in 53,669 screened birds) and constrained to two host families 

(Columbidae and Fregatidae), this parasite genus was not considered 
in the following analysis.

Local bird species richness showed a positive effect on infection 
probability for Leucocytozoon [odds ratio (OR) 1.83, CI 1.26–2.56] 
and Parahaemoproteus (OR 1.32, CI 1.09–1.59). Infection probabil-
ity increased with increasing host body mass for Leucocytozoon (OR 
1.25, CI 1.11–1.41), Parahaemoproteus (OR 1.62, CI 1.47–1.79) and 
Plasmodium (OR 1.36, CI 1.24–1.48). Infection probability increased 
among bird species spending more time foraging in the canopy 
for Leucocytozoon (OR 1.13, CI 1.05–1.22) and Parahaemoproteus 
(OR 1.26, CI 1.18–1.35), but decreased for Plasmodium (OR .88, CI 
.81–.95). Leucocytozoon infection probability increased with host 
migration distance (OR 1.19, CI 1.07–1.32). Higher proportions of 
wetland cover at different sites increased infection probability for 
Plasmodium (OR 1.35, CI 1.03–1.79), but decreased infection prob-
ability for Parahaemoproteus (OR .53, CI .37–.78) and Leucocytozoon 
(OR .52, CI .29– .95). Elevation increased infection probability for 
Leucocytozoon (OR 1.47, CI 1.14–1.9), but decreased infection prob-
ability for Plasmodium (OR .65, CI .53–.80). Infection probability 
for Leucocytozoon (OR .33, CI .20–.53) was considerably lower at 
sites with higher rainfall during the driest month and decreased 
with increasing rainfall seasonality (OR .59, CI .43– .80). At loca-
tions with higher annual rainfall, infection probability increased for 

F I G U R E  3   Estimates of the “global average” effects of different drivers on variation in the infection probability of the three most 
common avian haemosporidian genera (based on scaled covariates). Points depict posterior means of the fixed effect estimates from a 
spatio-phylogenetic varying coefficient model, and vertical lines indicate 95% credible intervals. For each parasite genus, the covariates that 
overlap with zero are shown in light bars. Abbreviation: NDVI = normalized difference vegetation index 
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Leucocytozoon (OR 1.83, CI 1.15– 2.91), but decreased for Plasmodium 
(OR .75, CI .58–.97). Sites with higher proportions of forest cover 
and vegetation density exhibited increased probability of infection 
by Parahaemoproteus (OR 1.31, CI 1.02–1.70) and Plasmodium (OR 
1.44, CI 1.05–1.97), respectively. Annual mean temperature, an-
nual fluctuation in vegetation density and distance to the equator 
showed no evident covariation with infection probability (i.e., CIs 
overlapped with zero) for any of the three parasite genera (Figure 3).

Varying coefficient estimates revealed that several covariate ef-
fects, notably mostly host ecological traits rather than environmen-
tal predictors, differed across zoogeographical realms (for variance 
estimates in coefficients, see Supporting Information Table S5). Two 
host traits and one environmental driver exhibited opposing ef-
fects on the probability of parasite infection across zoogeographical 
realms: Local bird species richness had a positive effect on infection 
probability for Parahaemoproteus in the Afrotropical, Palearctic and 
Sino-Japanese realms and a negative effect in the Saharo-Arabian 
realm (Figure 4). Migration distance was associated with increased 
Parahaemoproteus infection probability in the Neotropical, Saharo-
Arabian and Sino-Japanese realms, but with decreased infection 
probability in the Nearctic and Oriental realms (Figure 4). Likewise, 
migration distance was associated with increased Plasmodium infec-
tion in the Neotropical, Oceanian and Oriental realms, but with de-
creased infection probability in the Nearctic realm (Figure 4). Annual 
fluctuation in vegetation density was associated with increased in-
fection with Leucocytozoon in the Nearctic realm, but with decreased 
infection in the Palearctic realm (Figure 4). In addition, host body mass 
(infection with Leucocytozoon and Parahaemoproteus), canopy forag-
ing frequency (infection with Parahaemoproteus and Plasmodium) 
and proportion of wetland cover (infection with Leucocytozoon) all 
varied across realms according to variance in coefficient estimates 
(Figure 4; Supporting Information Table S5).

4  | DISCUSSION

Understanding large-scale variation in parasite prevalence and 
spread is of increasing importance in a changing world, where coun-
teracting disease emergence and outbreaks poses a global challenge. 
Using a global database of infections by four genera of a cosmopoli-
tan group of vector-transmitted blood parasites of birds, we show 
that infection probabilities for each parasite genus vary considerably 
across zoogeographical realms and avian host families. Our hierar-
chical global analysis identified key drivers of infection probability 
that differed in their magnitudes and directions among parasite 
genera. In particular, we found that bird richness and host attrib-
utes might have rather different impacts on infection risk in differ-
ent zoogeographical realms, whereas climate and habitat conditions 
are more likely to influence infection risk consistently across zooge-
ographical realms. Multiple global hotspots of avian haemosporidian 
infection emerge from our results, with strong variation in infection 
probabilities within realms, indicating that prevalence in avian hosts 
responds to regional factors in addition to broad-scale global drivers, 

such as latitudinal ecological/climatic gradients. Accounting for en-
vironmental context in synergy with biotic drivers, such as species 
ecological traits and host species assembly patterns, is crucial for 
understanding variation in infection probability and conditions that 
enable parasites to spread.

4.1 | Hotspots of haemosporidian infection 
probability

Disease hotspots are not necessarily stable over time and can result 
from a high frequency of local spillover events from alternative hosts 
species. A key challenge in disease ecology is to identify the traits of 
alternative host species (phylogenetically related or not) that might 
make them competent reservoirs of pathogens and increase local 
prevalence (Jones et  al.,  2008). Here, we identified locations with 
the greatest infection risk of a vector-transmitted parasite and host 
traits that potentially increase local prevalence. Notably, our macro-
ecological analyses of infection probability identified hotspots for 
haemosporidian parasites dispersed across different zoogeographi-
cal regions, some well outside the known biodiversity hotspots for 
most free-living organisms in the tropics. Unlike the pantropical 
distribution of human malaria hotspots, our map on global infection 
risk depicts hotspots for avian malaria in the Nearctic region and for 
Parahaemoproteus, a related avian malaria parasite, in the Palearctic 
region.

The longstanding and much-debated hypothesis that infec-
tion risk increases toward the equator (Allen et  al.,  2017; Jones 
et al., 2008; Stephens et al., 2016) was not supported in our syn-
thesis for vector-transmitted parasites. Tropical regions support 
higher bird diversity in comparison to temperate regions (Duchêne 
& Cardillo,  2015); hence, haemosporidian parasites from tropical 
regions might have a higher diversity of available “niches” to ex-
ploit. Furthermore, the greater diversity of both avian and vector 
host species in the tropics could lead to increased diversity within 
individual hosts through lineage sharing and host shifting (Ricklefs 
et al., 2014). Although surprising, the observed absence of a latitu-
dinal gradient in infection probability for the three most prevalent 
haemosporidian parasites matches what was found for lineage di-
versity at a global scale (Clark, 2018). Clark (2018) demonstrated 
that more diverse communities of haemosporidian parasites do not 
necessarily occur in tropical regions and suggested that macroevo-
lutionary factors, such as a propensity of parasites to shift hosts 
locally or timing of diversification, are more important drivers of 
local parasite diversity. Whether haemosporidian prevalence is cor-
related with lineage diversity and the propensity of these parasites 
to shift among hosts at different rates across latitude has yet to be 
investigated.

Our findings suggests that haemosporidian infection probabili-
ties emerge not only from general global drivers, such as climate, 
avian host richness and, possibly, migratory flyways that determine 
macroecological patterns of community assembly, but also from 
region-scale habitat and climate variation.
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4.2 | Spatial distribution of avian hosts overshadows 
phylogenetic signal in infection probability

Host phylogenetic position has been associated with variation in 
haemosporidian prevalence in avian communities and host clades 
(Barrow et al., 2019; Clark et al., 2020). Our study confirms these 
previous findings in terms of a strong phylogenetic signal in bird 
infection patterns with haemosporidian parasites. However, after 
accounting for both phylogeny and the location of the collected sam-
ples, we found considerable uncertainty in the phylogenetic signal 
at a global scale, indicating that strong phylogenetic signal inferred 
from a pooled sample (i.e., without taking spatial context/covariance 
into account) can be misleading. This uncertainty in phylogenetic sig-
nal can be especially pronounced at a large scale, in which distinct 
local host assemblages and samples are likely to include closely re-
lated individuals/species, which in turn might generate phylogenetic 
“pseudoreplicates” at the same locations.

Recognizing that avian haemosporidian prevalence is highly 
variable within and among host clades, and that it is spatially clus-
tered, as we have shown here, provides a new framework for out-
lining region-specific predictions of infection risk by multi-host 

vector-transmitted parasites. This is particularly true for areas un-
dergoing rapid climate change, anthropogenic landscape transfor-
mation and shifting host species assemblages. We believe that these 
patterns point to strong synergistic effects of host traits, landscape 
features and climatic filters driving infection patterns.

4.3 | Idiosyncratic drivers influence differences in 
global infection risk among haemosporidian genera

A central finding of our analysis was not only the identification of 
host traits driving infection probability for the three most prevalent 
haemosporidian genera, but also how their effects vary across zo-
ogeographical realms. We showed that bird species which migrate 
longer distances are more likely to be infected by Leucocytozoon 
world-wide. Given that most long-distance migrants spend part 
of their annual cycle breeding in temperate regions, where black 
fly vectors are more diverse and abundant (Currie & Adler, 2008), 
there would be much higher potential for Leucocytozoon transmis-
sion in long-distance migrants than in resident tropical species. 
Migration distance influenced infection probability in opposing 

F I G U R E  4   Varying coefficient estimates for variables with distinct effects across zoogeographical realms. The points depict the posterior 
mean of the regional-level effect estimates from a spatio-phylogenetic varying coefficient model, and vertical lines indicate 95% credible 
intervals. Abbreviation: NDVI = normalized difference vegetation index 
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directions across zoogeographical realms for the genera Plasmodium 
and Parahaemoproteus (see Results and Figure  4). These inverse 
trends in infection risk for vector-transmitted parasites in response 
to migration patterns warrant future research into the underlying 
mechanisms. Perhaps one of the interesting aspects to consider (if 
relevant data become available) could be the spatial context of para-
site transmission, given the possibility that transmission in migratory 
birds might take place either in the wintering area or in the breeding 
area, but not necessarily in both. This is especially relevant given 
the multifaceted environmental changes that are likely to amplify 
the anticipated changes in bird migration and community assembly 
(Howard et al., 2020; Visser et al., 2009), hence the future infection 
risk with haemosporidian parasites.

Avian hosts inhabiting sites with a higher proportion of wetland 
cover and denser vegetation are at greater risk of Plasmodium infec-
tion. The probability of a bird being infected with Parahaemoproteus 
consistently increased with the proportion of forest cover, whereas 
it decreased in sites with higher proportions of wetland cover. When 
anthropogenic landscape changes create structures capable of col-
lecting rainwater (e.g., artificial lakes, mining pits and rice fields) or 
change the course or flooding regime of rivers (e.g., dams and irriga-
tion systems), such changes in water availability might increase avian 
malaria prevalence. Conversely, reduction in forest cover might di-
minish the local transmission of Plasmodium and Parahaemoproteus 
among avian hosts, but whether tree cover removal has a direct ef-
fect on vector capacity or parasite capacity to shift between hosts 
at large spatial scales has yet to be investigated.

We found that higher annual rainfall is associated with de-
creased prevalence of Plasmodium but increased prevalence of 
Leucocytozoon. Furthermore, Leucocytozoon infection risk decreases 
at sites with substantial rainfall during the driest months and sites 
with pronounced variation in rainfall throughout the year. The rela-
tionship between rainfall and prevalence suggests that the expected 
disruption of precipitation patterns owing to anthropogenic impacts 
on global climate (Wehner,  2020) might affect the prevalence of 
avian haemosporidian genera differentially in the future. The mag-
nitude of this impact might vary by region owing to biogeographical 
structure in realized host specialization of haemosporidian lineages 
(Fecchio et al., 2019).

Elevation emerged as a predictor of Plasmodium and 
Leucocytozoon infection probability at a global scale, although 
with an opposite effect for each parasite genus. Our global data-
set allowed us to determine the probability of a bird being infected 
across an elevation gradient ranging from sea level to c.  4,700  m 
a.s.l. across 10 zoogeographical realms, while simultaneously con-
trolling for other climatic characteristics known to constrain vector 
development, activity and abundance (e.g., temperature and mois-
ture level), in addition to parasite reproduction (temperature). This 
approach consistently demonstrated that the probability of an indi-
vidual bird being infected with Plasmodium decreases with elevation 
across the globe, presumably because of constraints in parasite de-
velopment and transmission by mosquito vectors at higher-elevation 
sites (Atkinson et al., 2014). Although we showed that Leucocytozoon 

infection probability increased with elevation, presumably owing to 
the affinity of black fly vectors for colder sites at high elevations, 
hotspots of Leucocytozoon prevalence were also scattered across 
lowland bird assemblages.

Generally, with the currently available empirical evidence being 
constrained mostly to vertebrate host infections, correlative ap-
proaches, as taken in the present study, allow limited insights into 
which species and interactions in the vertebrate–host–pathogen 
transmission cycle are most sensitive to environmental change, war-
ranting future research into specific host–vector associations and 
host preferences. This is especially relevant for ectothermic arthro-
pod vectors, for which host preferences and biting rates are sensi-
tive to changes in climate and land use (Rose et al., 2020).

4.4 | Conclusions

Our spatio-phylogenetic analysis revealed that infection prob-
ability of haemosporidian parasites varies across zoogeographical 
realms and avian host clades owing to broad-scale and, possibly, 
also regional-scale variation in environmental conditions and host 
assemblages. A novel aspect of our study was to determine the driv-
ers and hotspots of infection probability for each haemosporidian 
genus on a global scale rather than at population or community lev-
els. Importantly, we found that infections in some low-prevalence 
realms were disproportionately concentrated in local hotspots, 
suggesting that regional-scale modifications in habitat and microcli-
mate (and perhaps also the way host species assemble in response 
to strong habitat modification) might increase transmission at a re-
gional scale. However, the synergistic effect of environmental driv-
ers, such as precipitation, vegetation density and the proportion of 
forest and wetland cover, along with host community and assembly 
attributes on the prevalence of multi-host pathogens across realms 
underscores the importance of considering biogeographical pat-
terns in host–parasite systems. At the same time, we suggest that 
the scattered distribution of local infection hotspots demonstrates 
that local processes, such as strong habitat modification and the re-
sulting shifts in host species assemblages, can produce unexpected 
increases in parasite prevalence, emphasizing that disease outbreaks 
might be difficult to predict from generalizable large-scale patterns, 
such as climate, alone.
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Supporting Information section.
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