Behavior of functional countability in products

Vladimir Tkachuk

Universidad Autonoma Metropolitana vvtmdf@gmail.com

A space X is called *functionally countable* if f(X) is countable for any continuous function $f: X \to \mathbb{R}$. We will show that, given a functionally countable space X, if K is a scattered Corson compact space, then the product $X \times K$ is functionally countable. If the space X is, additionally, weakly ω_1 -Lindelöf, then $X \times L$ is functionally countable for any scattered Lindelöf space L. In particular, if X is a weakly Lindelöf functionally countable space, then the product $X \times L$ is functionally countable whenever L is a scattered Lindelöf space. We also establish that any finite product of countably compact functionally countable spaces is functionally countable. If the product $X = X_1 \times \ldots \times X_n$ of functionally countable spaces X_1, \ldots, X_n is pseudocompact, then X is functionally countable.

1